	Q.P. Code: 20	EE02	16											R2 (0
	Reg. No:]			
	SIDDH	IART	H INS	STITU	TE O	FEN	GINE	ERIN	'G & '	ГЕСН	INOL	. 0GY::]	PUTTUI	R	
		рт	ooh II	II Voo	- I So	(AU	TON()MOU	JS) vomi	nation	s Ma	reh_2023			
		ELE	CTRI	CAL	MEAS	SURE	MEN		JD IN	STRI	IMEN	NTATIO	N		
		LLL	em	(El	lectric	al and	Electi	conics	Engin	eering	g)				
	Time: 3 hours								C				Max. M	larks: 6	50
				(A	nswe	r all F	ive Ur UI	nits 5 : NIT-I	x 12 =	60 M	arks)				
1	a Illustrate the instruments.	e con	structi	ion an	d wo	rking	of pe	rmane	ent m	agnet	mov	ing coil	CO1	L3	8M
	b List the adva	ntage	s and	disadv	antag	es of I	PMMC	C type OR	instru	iment	s.		CO1	L1	4 M
2	a Justify, how with diagram	do yo 1.	ou exte	end th	e rang	ge of a	an An	imeter	r? Exp	olain A	Aryto	n Shunt	CO1	L5	8M
	b A moving co	oil ins	strume	ent giv	ves a	full -	scale o	leflect	tion c	of 10m	nA w	hen the	CO1	L5	4M
	potential acr scale deflecti	oss it ion co	s term orrespo	inals i onding	s 100 g to 10	mV. (0 A.	Calcula	ite shu	int re	sistan	ce for	a full -			
3	Correlate subs medium resista	tituti nces.	on m	ethod	and	pote	ntiom	eter	metho	od fo	or me	easuring	CO2	L4	12M
							(OR							
4	a Justify how t Maxwell"s bi	the in ridge	ducta	nce is	meası	ired i	n tern	ns of k	nowr	ı capa	citano	ce using	CO2	L5	8M
	b List the adva	ntage	s and	disadv	antag	es of I	Maxwe UN	ell"s B IT-III	ridge.				CO2	L1	4M
5	Derive the to wattmeter.	orque	equa	tion f	for si	ngle	phase	elec	tro d	ynam	omet	er type	CO3	L3	12M
							(OR							
6	a Correlate ho	w the	meas	ureme	nts ar	e mad	le usin	g LPF	and U	JPF w	/attme	eters.	CO3	L5	6M
	b Explain erro type wattmen	rs cau ter.	ised b	y vibi	ration	of m	loving	syste	m ele	ctro c	lynan	nometer	CO3	L2	6M
							UN	IT-IV	-						
7	a Explain the c	constr	uctior	ı of Cu	irrent	trans	forme	r.					CO4	L2	8M
	b Why second	ary of	C.T s	hould	not b	e opei	n?						CO4	L4	4M
Q	Describe the w	orkin	a nrin	ainlaa	fnior		tric tr	OR	0010				CO5	12	1 2 M
0	Describe the W	UIKIII	e him	cipie c	n piez		UN	IIT-V	CE15.				605	LZ	I ZIVI
9	Describe the co	onstru	ction	and w	orkin	g of a	movir	ig coil OR	ballis	tic ga	lvano	meter.	CO6	L2	12M
10	a Explain the f	uncti	ons of	time l	base g	enera	tor in	a CRC).				CO6	L2	6M
	b Analyze the	Lissaj	ous pa	itterns		ų	**	D ***					CO6	L4	6M
						Ŷ	- EN	D							

Ros. No.			
	c		